你还在用ChatGPT聊天么?
从全民热衷尝鲜,到仅有少部分人仍在使用,上半年的ChatGPT喧嚣进入尾声,而由另一维度观测,新技术的生命力在市场,只有客户拿真金白银买单的大模型,才是技术-商业的正向循环,下半年,行业大模型争相落地开启新的竞争。
在7月7日举办的华为开发者大会2023上,华为云正式发布盘古大模型3.0。盘古大模型3.0是一个完全面向行业提供服务,以行业需求为基础设计的大模型体系,包括5+N+X三层架构。
不疾不徐,华为盘古大模型揭开了新的一重面纱,也是ChatGPT热潮之后,华为首次系统性地谈论大模型。
钛媒体App了解到,华为并不热衷于“百模大战”,尽管早在2021年4月,华为云就发布了盘古大模型,包括NLP大模型和CV大模型,此后华为相继发布科学计算大模型、药物分子大模型、盘古矿山大模型和气象大模型。
“熟悉华为的人想想就知道,‘盘古chat’不符合华为的主航道,华为的策略是拿下B端市场,基础模型早就发布过,国内国外C端的大模型声量虽然大,但是华为没有想去掺一脚,还是坚定地做自己擅长的事,到了整个市场都重视大模型落地、谈论行业大模型的时候,华为就必须要站出来了”,一位接近华为人士表示。
华为是国内最早发布大模型的厂商之一,资本市场概念的炒作一轮又一轮,当产业潮水涌向行业大模型,华为还是按捺不住,将自己的大模型战略和盘托出。
华为轮值董事长胡厚崑在WAIC上表示,华为人工智能的发展关键是“走深向实”,着力点放在让人工智能为千行百业的生产活动服务,为科研创新服务。
当前阶段,华为在人工智能发展上有两个着力点:第一,打造强有力的算力底座,支撑中国人工智能产业的发展。第二,从通用大模型到行业大模型,让人工智能服务好千行百业、服务好科研创新。
大模型“卷”落地
前车之鉴,后事之师。数十年间,人工智能技术发展的曲线潮起潮落,“落地难”始终是横亘在产业现实的一道关卡。
在ChatGPT热潮之前,人工智能面临场景碎片化的问题,同时人工智能并没有进入到企业的核心场景,技术和业务不是紧耦合的关系,也就很难形成规模效应。
根据第三方网站SimilarWeb的监测数据,6月份,ChatGPT的网站与移动客户端的全球流量环比下降了9.7%,美国地区的流量环比下降了10.3%。同时,ChatGPT的独立访客数量(UV)下降了5.7%,访客在网站上花费的时间也下降了8.5%。这是自2022年11月30日发布以来,ChatGPT首次出现流量负增长。
拐点的到来,在一些人的意料之外,却在另一些人的情理之中。
华为常务董事、华为云CEO张平安表示,“目前大模型大多数应用都集中在2C领域,在面向行业应用时,由于行业数据获取难,技术与行业know-how结合难,大模型在行业的落地进展较慢。”
当普罗大众还在沉浸ChatGPT聊天的惊艳表现时,人工智能厂商已经在设想大模型的商业化,国际上,微软、亚马逊等大厂向企业级服务寻求商业化路径,进行多个行业的探索;国内,诸如华为、百度、阿里、腾讯等大小厂商,都在快马加鞭加速行业大模型投入。
华为很早就看到了这一方向,据悉,2020年,华为判断人工智能有两个发展方向,一个是小模型到大模型的趋势;第二个,人工智能和行业的结合,就是AI for Industries,华为认为AI在千行百业有着极大的想象空间。
前者,随着模型参数的不断扩大,小模型到大模型的趋势已然兑现,张平安介绍,盘古3.0能够为客户提供100亿参数、380亿参数、710亿参数和1000亿参数的系列化基础大模型,匹配客户不同场景、不同时延、不同响应速度的行业多样化需求。
后者,在GPT火热之前,盘古大模型已经深耕行业,打造矿山、气象、药物分子、铁路等领域行业大模型和能力集,将行业知识know-how与大模型能力相结合,重塑千行百业,为每个企业、每个人提供专家助手,让工作更轻松。
如果说,彼时华为的战略预判还略显突兀,没有太多的参考,那么,如今大模型已经足以证明,华为的技术和业务路线的双重正确。
今年以来,华为迟迟不去“蹭”大模型的风口,而是在水面之下做一些基础的工作。盘古大模型发布以来,华为一直思考的都是客户运营、产品研发、软件工程、生产供应、市场营销等行业客户所关注的问题,坚持自己的技术主张和研发节奏,不急于求成,始终追求技术突破和技术领先,确保产品质量和交付质量。
“华为早在2020年就坚定地选择了大模型路线,当时市场上的热度并没有今天高,也存在很多质疑的声音,我们仍然坚持了下来,未来不管炒作与否,热度高低,我们都会尽量不受外界干扰,坚持做正确的事。”华为云人工智能领域首席科学家田奇对钛媒体App表示。
谈及行业过热的状态,田奇表示,“针对大模型这样最顶尖的技术,市场的热度一方面反映了资本对大模型盈利能力的期待,另一方面也反映了公众对大模型应用能力的期待。”
市场是最大的驱动力,大模型最大的改变,是创造了一个规模化效应的出口,上层应用都可以基于大模型去发展,把碎片化的场景,归拢统一,形成一套大模型解决方案,盘古大模型3.0的升级也遵循相似的逻辑。
盘古3.0大模型体系的5+N+X三层架构中,5大L0层的基础大模型,包括自然语言大模型、视觉大模型、多模态大模型、预测大模型、科学计算大模型,能够提供各种通用技能,支撑企业的各类应用。
N个L1层的行业大模型,例如政务大模型,金融大模型,矿山大模型等,能够基于基础大模型的多种能力组合,通过行业数据以及企业自有数据的二次训练,帮助企业打造自己的大模型。
X代表海量L2层的场景模型,与基础大模型和行业大模型相比,场景模型更加专注于某个具体的应用场景或特定业务,为客户提供开箱即用的模型服务,例如,在医疗领域,针对小分子筛选,小分子优化等。
从“无人相信”到登上《Nature》
华为开发者大会2023发布会前夕,华为云盘古大模型团队研发的高分辨率全球AI气象预报系统研究成果,正式在《Nature》正刊上发表,基于三维神经网络的气象预报系统精度,超过传统数值预报方法,且速度提高了1万倍以上。
少有人知道的是,就在去年12月份,国际气象领域的专家教授们还普遍认为,AI要达到传统数值方法的精度,是一件非常遥远的事。
“There are a lot of comments I could make indicating that this is perhaps not yet quite the triumph of AI over physical modelling. despite the claims in the paper. Never the less it is a big step forward compared to other efforts. The paper has also been causing a degree of existential angst at ECMWF.
欧洲中期天气预报中心是全球权威的国际性天气预报研究和业务机构,该中心于1979年6月首次做出了实时的中期天气预报,现在,华为盘古气象大模型,为世界展现了另一种可能。
盘古气象大模型研发团队核心成员对钛媒体App表示,之前大家不相信AI方法能够实现更高的精度和更好的效率,ECMWF也在探索用AI预测天气,但是规划的时间表以十年计算,他们认为,AI方法存在很多现阶段难以突破的问题。
例如分辨率不够,省级和区级的天气预报,数据量相差很大,如果要做到更高的分辨率,数据量要达到上千TB,这比其他AI应用数据量要大得多,大数据意味着消耗大算力,这部分问题能够通过堆硬件、工程化解决。
再如现有的 AI 预报方法精度大部分显著低于数值预报方法,这也是很多人都不相信AI能够超过数值预测方法的主要原因,现有的 AI 气象预报模型都是基于 2D 神经网络,无法很好地处理不均匀的 3D 气象数据,同时AI 方法缺少数学物理机理约束,因此在迭代过程中会不断积累迭代误差。
华为云提出了3D Earth-Specific Transformer方法,在每一个视觉transformer模块中新引入和纬度、高度相关的绝对位置编码,从而更好地处理复杂的3D气象数据,并且拆分各个不同的时间段模型分散训练,减少单个模型迭代的次数,从而减少迭代误差。
“我们不仅做出来一个精度超过欧洲气象中心数据预报的模型,而且我们迅速让这个模型落地,其中克服了很多问题,让气象专家实测验证模型结果,他们没有理由否认AI方法的先进性。”如上人士表示。
气象大模型的打造成为一个实证,华为云不仅能有意愿打造行业大模型,并且有将其付诸实践的工具和能力。对应华为盘古大模型,L0是科学计算基础大模型,L1是气象行业大模型,L2就是气象预测等应用。
大模型回答了“一个模型能否解决通用问题”以及“模型本身是否有价值”的关键问题,但是要想真正构建完整的业务链条,还需要从商业化层面跟进,为了加速和简化行业大模型从开发到落地,华为云提供了盘古大模型工程化平台,覆盖了数据处理、模型训练和应用开发三大环节。
在数据平台方面,相比传统标注平台,华为云数据工程平台专门为SFT训练提供了基于模板的Prompt在线辅助撰写功能,为RLHF训练提供了多人Rank在线标注和任务分拨功能;对比离线进行这两种任务,实测效率可提升3倍。
有了高质量的数据如何产生高质量的模型,还需要确保模型开发的过程准确无误,在模型训练方面,大模型开发套件提供了自监督预训练,有监督SFT训练,强化学习训练3种工作流,覆盖了从数据集创建,超参配置到模型训练、评估、部署的全流程,凝结了大模型专家的实践经验,把复杂的大模型开发,流程化,标准化,简单化,帮助行业用户一键启动,一站式开发。
之后,开发好的盘古大模型要想在行业发挥作用,离不开下游应用,在模型开发方面,华为云提供盘古应用开发套件,将传统软件工程与大模型相结合,提供多种API和工具可调用,支撑企业分钟级构建大模型原生应用。
例如,基于盘古语言大模型和视觉大模型的基础能力,以及盘古大模型工程化平台,在学习了超过20万条政务数据,包括政策文件、政务百科等公开政务知识,以及12345热线场景等专有政务知识后,深圳市福田区政府打造了具备丰富法律法规、办事流程等行业知识的福田政务大模型。
据了解,参照GPT-3完成一个千亿行业模型端到端开发,基于盘古大模型工程化平台,开发大模型从过去需要5个月缩短到现在1个月,整体速度提升5倍。
AI世界的另一极
人工智能已经成为国家战略竞争焦点,AGI可能改变甚至颠覆世界运转的原有逻辑,国家层面强调:“人工智能是引领这一轮科技革命和产业变革的战略性技术,具有溢出带动性很强的‘头雁’效应。”
人工智能与实体经济的结合,行业大模型扮演着重要作用,行业重塑、技术扎根、开放同飞,是华为云的差异化优势。
行业大模型以行业数据和know-how为重中之重,华为云AI的优势在于,在各行业已有超过数百个项目,基于对行业的深入理解,沉淀行业核心know-how,华为云盘古大模型能够更好地落地在行业客户的主业务场景。
盘古大模型已经学习10多个行业公开数据,涵盖金融、政务、气象、医疗、健康、互联网、教育、汽车、零售等。华为云和伙伴还联合打造了工业、供热、政务、煤矿、教育、电力、公路7大行业aPaaS,为盘古大模型了构建最深厚的行业积累。
墙高基下,虽得必失,人工智能产业需要从最底层夯实基础,张平安提到,其他人都可以依赖行业最成熟的AI算力和AI生态,但是华为只能依靠自己的AI根技术。
中国工程院院士郑纬民此前表示,大模型是新型关键基础设施的底座之一,大模型的竞争也是国家科技战略的竞争,中国一定要布局全栈自主创新的大模型产品,同时要构建国产化算力,也要解决算力能耗与国家“双碳”战略的平衡。
为此,华为构建了最深的AI堆栈根技术,在最底层构建了以鲲鹏和昇腾为基础的AI算力云平台,构建了昇腾的计算引擎CANN、AI框架MindSpore,以及AI开发平台ModelArts,为大模型开发和运行提供分布式并行加速,算子和编译优化,集群级通信优化等关键能力。
“现在基于华为的AI堆栈,我们的大模型训练效能不仅不落后,在大模型场景下我们的训练效能是业界主流GPU的1.1倍”,他说。
与此同时,华为云提供了易用可靠的大模型工具套件、汇聚海量多行业场景API的开天aPaaS,以及包含丰富优质课程和技术认证的大模型专属社区,帮助开发者一站式完成入门到专家。
华为也积累了高密度的大模型人才:盘古团队中大概50%以上是博士,还有很多名“天才少年”,上述气象大模型的核心成员便是之一,大模型在训练过程中,会遭遇各种各样的困难和挑战,一个技术过硬、敢于创新的团队,才是大模型能够练成的核心保障,也是华为对外输出大模型能力的依托。
AI大模型时代,面临自下而上自主创新的宏大命题,华为正在打造世界AI另一极。
声明:免责声明:此文内容为本网站转载企业宣传资讯,仅代表作者个人观点,与本网无关。仅供读者参考,并请自行核实相关内容。
环球消息报道-未经本站允许,禁止镜像及复制本站。投诉及建议联系邮箱:linghunposhui@sina.com
Copyright © 2018 All Rights Reserved 环球消息报道 global.hqcbm.cn 版权所有,备案号:吉ICP备11002219号